25 SCOPOLAMINE AND ATROPINE QUANTITATION AND CONFIRMATION BY LCMS	Page 1 of 4		
Division of Forensic Science	Amendment Designator:		
TOXICOLOGY TECHNICAL PROCEDURES MANUAL	Effective Date: 31-March-2004		

25 SCOPOLAMINE AND ATROPINE QUANTITATION AND CONFIRMATION BY LCMS

25.1 Summary

25.1.1 Scopolamine and atropine are extracted from biological samples by making the samples basic with saturated borate buffer and extracting with toluene/hexane/isoamyl alcohol. An aliquot of the extract is analyzed by high performance liquid chromatography-electrospray ionization mass spectrometry (LC-ESI-MS).

25.2 Specimen Requirements

25.2.1 2 mL blood, fluid or tissue homogenate.

25.3 Reagents and Standards

- 25.3.1 Atropine, 1 mg/mL
- 25.3.2 Scopolamine, 1 mg/mL
- 25.3.3 Pentazocine, 1 mg/mL
- 25.3.4 Sodium tetraborate decahydrate
- 25.3.5 Hexane
- 25.3.6 Isoamyl alcohol
- 25.3.7 Methanol
- 25.3.8 Toluene
- 25.3.9 Acetic Acid
- 25.3.10 Acetonitrile

25.4 Solutions, Internal Standard, Calibrators and Controls

- 25.4.1 Saturated borate buffer solution. Add sodium tetraborate decahydrate to dH₂O until no more dissolves after shaking vigorously.
- 25.4.2 Toluene:Hexane:Isoamyl Alcohol (THIA) (78:20:2, v:v:v) Mix 78 mL toluene, 20 mL hexane and 2 mL isoamyl alcohol.
- 25.4.3 Drug stock solutions:
 - 25.4.3.1 If 1 mg/mL commercially prepared stock solutions are not available, prepare 1 mg/mL solutions from powders. Weigh 10 mg of the free drug, transfer to a 10 mL volumetric flask and QS to volume with methanol. Note: If using the salt form, determine the amount of the salt needed to equal 10 mg of the free drug, and weigh this amount. Stock solutions are stored capped in a refrigerator and are stable for 2 years.
- Working standard solution for scopolamine and atropine (SCAT, 0.001 mg/mL): Pipet 10 µL each of the 1 mg/mL stock solution of scopolamine and atropine into a 10 mL volumetric flask and QS to volume with methanol.

25 SCOPOLAMINE AND ATROPINE QUANTITATION AND CONFIRMATION BY LCMS Division of Forensic Science Amendment Designator: TOXICOLOGY TECHNICAL PROCEDURES MANUAL Effective Date: 31-March-2004

- 25.4.5 Working internal standard solution (0.001 mg/mL pentazocine): Pipet 10 μL of the 1 mg/mL stock solution of pentazocine into a 10 mL volumetric flask and QS to volume with methanol.
- 25.4.6 To prepare the calibration curve, pipet the following volumes of the 0.001 mg/mL SCAT working solution into appropriately labeled 16 x 125 mm screw cap test tubes. Add 2 mL blank blood to obtain the final concentrations listed below.

Amount of 0.001 mg/mL SCAT	Final concentration of SCAT
working solution (μL)	(µg/L)
200	100
100	50
40	20
20	10
10	5
4	2
2	1

25.4.7 Controls

- 10.1.1.1 SCAT Controls. Control may be from a external source or prepared in house using drugs from different manufacturers, lot numbers or prepared by a chemist different than the individual performing the extraction.
- 25.4.7.1 Negative control. Blood bank blood or equivalent determined not to contain scopolamine, atropine or pentazocine.

25.5 Apparatus

- 25.5.1 Test tubes, 16 x 125 mm, round bottom, borosilicate glass with Teflon caps
- 25.5.2 Test tubes, 16 x 114 mm, glass centrifuge, conical bottom
- 25.5.3 Centrifuge capable of 2000-3000 rpm
- 25.5.4 Nitrogen evaporator with heating block
- 25.5.5 Vortex mixer
- 25.5.6 GC autosampler vials with inserts
- 25.5.7 LC/MS: Agilent Model 1100 LC-MSD
 - 25.5.7.1 LCMS Instrument Conditions. The following instrument conditions may be modified to adjust or improve separation and sensitivity.

25.5.7.1.1 Elution Condicitons

25.5.7.1.1.1	Column:	Agilent Hype	ersil BDS	125 mm X 3	3 mm, 3 μM	I particle size

25.5.7.1.1.2 Column thermostat: 35° C

25.5.7.1.1.3 Solvent A: 45% water with 1% acetic acid

25.5.7.1.1.4 Solvent B: 55% methanol

25 SCOPOLAMINE AND ATROPINE QUANTITATION AND

CONFIRMATION BY LCMS

Page 3 of 4

Division of Forensic Science

Amendment Designator:

TOXICOLOGY TECHNICAL PROCEDURES MANUAL

Effective Date: 31-March-2004

25.5.7.1.1.5 Isocratic elution, stop time: 6.20 min

25.5.7.1.2 Spray Chamber

25.5.7.1.2.1 Ionization Mode: Electrospray 25.5.7.1.2.2 Gas Temperature: 350° C 25.5.7.1.2.3 Drying Gas (N₂): 12.0 L/min 25.5.7.1.2.4 Nebulizer pressure: 30 psig 25.5.7.1.2.5 Vcap (Positive): 4000 V

25.5.7.1.3 Selected Ion Monitoring (quantitation ions)

25.5.7.1.3.1 Polarity: Positive 25.5.7.1.3.2 Injection volume: 8 μL

Time	Group Name	SIM	Frag-	Gain	SIM	Actual
(min)		Ion	Mentor	EMV	Resol.	Dwell
0.0	Scopolamine	138	220	1.0	Low	195
		156			195	
		<u>304</u>			195	
0.0	Atropine	93	220	2.0	Low	195
		124			195	
		<u>290</u>			195	
4.2	Pentazocine	173	220	1.0	Low	392
		218	250		392	
		286	250		392	

25.6 Procedure

- 25.6.1 Label clean 16 x 125 mm screw cap tubes appropriately with calibrators, controls and case sample IDs.
- 25.6.2 Prepare calibrators and controls.
- 25.6.3 Add 2 mL case specimens to the appropriately labeled tubes.
- 25.6.4 Add 100 μ L 0.001 mg/mL pentazocine internal standard working solution to each tube for a final concentration of 2mg/L.
- 25.6.5 Add 2 mL saturated borate buffer and 6 mL extract solvent (78:20:2 THIA) to each tube.
- 25.6.6 Cap and rotate tubes for 30 minutes.
- 25.6.7 Centrifuge at approx 2500 rpm for 15 minutes. Transfer organic upper layer (THIA) to appropriately labeled conical bottom test tubes.
- 25.6.8 Evaporate samples to dryness at approximately 50° C under nitrogen.
- 25.6.9 Reconstitute samples in 500 µL acetonitrile.
- 25.6.10 Add 1 mL hexane to each tube. Vortex each sample for 30 seconds.

25 SCOPOLAMINE AND ATROPINE QUANTITATION AND CONFIRMATION BY LCMS	Page 4 of 4		
Division of Forensic Science	Amendment Designator:		
TOXICOLOGY TECHNICAL PROCEDURES MANUAL	Effective Date: 31-March-2004		

- 25.6.11 Centrifuge at approx 2500 rpm for 10 minutes. Aspirate and discard upper hexane layer.
- 25.6.12 Evaporate samples to dryness at approximately 50° C under nitrogen.
- 25.6.13 Reconstitute samples in 100 µL methanol. Transfer to GC autosampler vials for analysis by LCMS.

25.7 Calculation

25.7.1 Drug concentrations are calculated by linear regression analysis using the ChemStation software.

25.8 Quality Control and Reporting

25.8.1 See Toxicology Quality Guidelines

25.9 REFERENCES

- 25.9.1 J Saady and A Poklis. Determination of Atropine in Blood by GCMS. J Anal Tox 13: 296-299, 2001.
- 25.9.2 J Pearson and R Steiner, in-house development.